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Abstract

The basic objective of this paper is the presentation of a numerical model for the mixing of an inclined submerged

heated plane water jet in calm fluid, which has some improvements over similar models presented by various other

investigators. The basic features of our model are: the conservation of heat flux instead of conservation of the buoyancy

flux, the inclusion of the turbulent heat flux integrated across the jet, and the modification to include entrainment

coefficient depending on the local Richardson number. This model predicts with reasonable accuracy experimental

results regarding the axial dilution and the trajectory. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

An inclined submerged heated water jet is produced

by the discharge of heated effluents through a diffuser

with ports at an angle with the vertical. The mechanics of

buoyant jet flows are presented by List [1,2]. Various

numerical models have been proposed to study this

problem, see for example, Fan and Brooks [3], Anwar [4],

Chan and Kennedy [5], Lee [6]. In the previous numerical

models, the contribution of the turbulent heat flux inte-

grated across the jet was neglected. Also the use of con-

stant entrainment coefficient did not help to an accurate

simulation of these kinds of flows. The improvements of

this model are to use the conservation of heat flux instead

of buoyancy flux, which is more suitable for cooling

water plume dilution models, to include the contribution

of the turbulent heat flux and to use an entrainment

function that varies with Richardson number.

2. Description of the numerical model

The mathematical model of the problem is given by

the following equations in an appropriate coordinate

system indicated in Fig. 1.

Variables s and n are the natural (curvilinear)

coordinates. Variable s measures the distance along the

jet axis from the origin and n is the coordinate

perpendicular to the jet axis; overbar indicates time

mean values and prime turbulent fluctuations; qa is
the ambient density; P is the (mean) pressure, T is the
mean excess temperature; u and v are, respectively,

the velocities along the s and n axis. Assuming

Boussinesq approximation we may write:

Conservation of mass:
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The above equations can be integrated across the

buoyant jet to obtain the following integral equations:

Conservation of mass:

d

ds

Z
jet

uðs; nÞdn ¼ �2ve ¼ 2aeum; ð5Þ

where ve is the entrainment velocity, ae the entrainment
coefficient and um is the axial velocity at distance s.
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Conservation of heat:

Z
jet
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os

!
dn ¼

Z
jet

uT dnþ
Z
jet

u0T 0 dn

¼ HM þ HT ¼ 0 or ð8ÞZ
jet

ðuT þ u0T 0Þdn ¼ H0 ¼ input heat flux; ð9Þ

where H0 is the input heat flux, HM ¼
R
jet
uT dn is the

cross-sectional heat transport by the mean flow and

HT ¼
R
jet
u0T 0 dn is the cross-sectional heat transport by

the turbulence.
The resulting numerical model is an integral model of

the flow of the type that Fan and Brooks [3] used to

study numerically the behavior of buoyant jets.

Nomenclature

List of symbols

b1=eT value of n at which the mean temperature

takes the value Tm=e
b1=eu value of n at which the mean velocity takes the

value um=e
bu value of n at which the mean velocity takes the

value um=2
D width of the plane jet at the exit

FL local Froude number

g acceleration of gravity

H0 input heat flux

HM heat transport by the mean flow

HT turbulent heat flux

mðsÞ local momentum flux

n coordinate perpendicular to the jet axis

P mean pressure

Rch Richardson number

s distance along the jet axis from the origin

T mean excess temperature

Ta temperature of the ambient fluid

Tm temperature at the jet axis

T0 temperature of the heated plane water jet at

the exit

u velocity along the s axis

um axial velocity at distance s

U0 initial velocity at the jet axis

v velocity along the n axis

ve entrainment velocity

ae entrainment coefficient

Greek symbols

bðsÞ local buoyancy flux

h angle of inclination

k the ratio b1=eT=b1=eu
lðsÞ local mass flux

q density

qa density of the ambient fluid

qm density at the jet axis

q0 density of the heated plane water jet at the exit

Fig. 1. Geometry of an inclined submerged heated plane water

jet.
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However, our model has some improvements. The basic

new features of this model are the following:

2.1. The inclusion of turbulent heat flux in the equation of

conservation of heat

All the previous models (i.e. Fan and Brooks [3],

Chan and Kennedy [5], Hirst [7], Lee [6]) assumed that

the integral across the jet of the turbulent heat (and

consequently buoyancy) flux can be neglected. However,

the contribution of the turbulent heat flux HT integrated
across the jet is not negligible, and according to Kot-

sovinos [8], Kotsovinos and List [9] the turbulent heat

flux HT reach 30–40% of the total heat flux H0 for a
vertical plane plume. This feature of the flow is very

important and should be included in the integral type

numerical models. The ratio of the turbulent transfer of

heat HT to the total heat transfer H0 is a function of the
local importance of buoyancy forces which are expressed

by the local Richardson number

Rch ¼
l3b
m3

; ð10Þ

where lðsÞ, bðsÞ and mðsÞ are the local values of the
fluxes of mass, buoyancy and momentum across the jet.

The Richardson number is the reciprocal of the local

Froude number FL i.e.

Rch ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pk2

ln 2ð1þ k2Þ

s
1

F 2L
: ð11Þ

For a pure plane jet Rch ¼ 0 and for a pure plane plume
Rch ¼ 0:6. In this numerical model, a relationship be-
tween the turbulent heat flux HT and the H0 similar to the
one proposed by Kotsovinos and List [9] was adopted.

HTðsÞ ¼ ð0:06þ 0:51RchðsÞÞH0: ð12Þ

The experimental coefficients in the above equation are

suggested from the experimental results of the experi-

mental data of Angelidis [10].

2.2. The conservation of the heat flux (and not the

buoyancy flux)

Fan and Brooks [3] as well as most previous investi-

gators adopted the basic conservation approach of

Morton et al. [11] and they assume the conservation of

density deficiency which implies that buoyancy flux of a

buoyant jet in a homogeneous ambient fluid is conserved.

This assumption was adopted by most previous investi-

gators considering it accurate and they applied this as-

sumption in buoyant water jets independently of the

origin of the buoyancy, i.e. salt or heat. The assumption

of conservation of the buoyancy flux is not accurate for

thermal water jets. Lemieux [12] conducted experiments

with horizontal plane thermal jets and noticed that the

experimentally determined trajectories do not agree with

the prediction of a numerical model similar to the models

of Fan and Brooks [3] or the model of Chan and Ken-

nedy [5]. However, the reason for this discrepancy was

not clear to previous investigators. Kotsovinos [8] and

Kotsovinos and List [9] pointed out that due to the non-

linear relation between water density and temperature

(or non-constant thermal expansion coefficient of the

water), the thermal buoyancy flux is not conserved, but it

is the heat flux which is conserved. They showed that the

buoyancy flux at some distance from the exit was reduced

to 50% of its initial value. Kotsovinos [8] presented a

numerical model for the vertical buoyant jet considering

variable thermal buoyancy flux.

Therefore we require in this numerical model the

conservation of heat flux instead of the conservation of

the buoyancy flux. The buoyancy at each cross-section is

calculated from the integral of the density profile across

the jet, where the density profile is calculated from the

temperature profile using an accurate non-linear rela-

tionship between density and temperature, for example:

�qq ¼ 1þ ððA0 þ A1 �TTm þ A2 �TT 2m þ A3 �TT 3mÞ=1000Þ; ð13Þ

where A0 ¼ �0:09462134700, A1 ¼ 0:0513121236000,
A2 ¼ �0:00738763631, A3 ¼ 0:0000326214688.

2.3. The coefficient of entrainment, ae defined as

d

ds

Z þBðsÞ

�BðsÞ
uðs; nÞdn ¼ 2ae�uum

is a function of the local Richardson (or local Froude)

number and according to Kotsovinos [8] is given by the

equation

2ae�uum ¼ ðq0 þ q1RchÞ
m
l
; ð14Þ

where q0 and q1 are experimental constants which for
vertical plane buoyant jets obtain the values q0 ¼ 0:146
and q1 ¼ 0:252. The same values are adopted in this
numerical model. The maximum value of ae used in this
work was 0.11, even though the obtaining from Eq. (14)

was greater.

To simplify the problem the usual approach is to

integrate the above set of equations across the buoyant

jet assuming that the time averaged mean velocity profile

normal to the jet axis, the time-averaged mean temper-

ature profile and time-averaged mean density profile are

given by the Gaussians:

�uuðs; nÞ ¼ �uum expð�n2=b21=euÞ; ð15Þ

qa � �qqðs; nÞ
qa

¼ qa � �qqm
qa

expð�n2=ðkb1=euÞ2Þ; ð16Þ

�TT ðs; nÞ ¼ �TTm expð�n2=ðkb1=euÞ2Þ; ð17Þ
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where �uum, �qqm, �TTm are the mean values of the velocity,
density and temperature at jet axis, b1=eu is the value of n at
which the mean velocity takes the value �uum=e, b1=eT is the
value of n at which the mean temperature takes the value
�TTm=e, k is the ratio of these two widths i.e. k ¼ b1=eT=b1=eu.
Typical value for k for the vertical buoyant jet is 1.2–1.3,
see Kotsovinos [8], List [2]. Furthermore, we make the

following assumption and approximation: the pressure is

everywhere hydrostatic. This assumption simplifies the

model, but is not correct (see Kotsouinos and Angelidis

[13]) and for a jet out of a wall of significant. In our case it

estimated that this error is of the order of �2%.
The integrated across the jet equations give therefore

the following set of equations (see also Fig. 1 for the

symbols):

Continuity:

d

ds
½�uumb1=eu	 ¼ 2ae�uum=

ffiffiffi
p

p
: ð18Þ

x-momentum:

d

ds
�uu2mb1=euffiffiffi

2
p cos h

" #
¼ 0: ð19Þ

y-momentum:

d

ds
�uu2mb1=euffiffiffi

2
p sin h

" #
¼ gkb1=eu

qa � �qqm
qa

: ð20Þ

Heat flux:

H0 ¼ qcp

Z þBðsÞ

�BðsÞ
�uuðs; nÞ �TT ðs; nÞdnþ

Z þBðsÞ

�BðsÞ
u0T 0 dn

¼ HM þ HT ¼ HM þ ð0:06þ 0:51RchðsÞÞH0; ð21Þ

where cp is the specific heat of water. Combining the
above equations, we find the following set of seven linear

differential equations:

dx
ds

¼ cos h; ð22Þ

dy
ds

¼ sin h; ð23Þ

dh
ds

¼
ffiffiffi
2

p
gk

�uu2m

qa � �qqm
qa

cos h; ð24Þ

dð �TTm � TaÞ
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¼� 2aeffiffiffi
p

p
b1=eu

ð �TTm � TaÞ

þ x
�qqm�uu3m

2
4 �

�TTm � Ta
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�qqm

3
5 d�qqm
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 !

� x
qa � �qqm
�qqm�uu3mb1=eu

db1=eu
ds

� �

þ 2xðqa � �qqmÞ
�qqm�uu4m

d�uum
ds

 !
; ð25Þ

where x ¼ 1:442q0u0T0Dg=qa,

d�uum
ds

¼
ffiffiffi
2

p
gk

�uum

qa � �qqm
qa

sin h � 2ae�uumffiffiffi
p

p
b1=eu

; ð26Þ

db1=eu
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¼ 4aeffiffiffi
p

p �
ffiffiffi
2

p
gkb1=eu
�uu2m

qa � �qqm
qa

sin h; ð27Þ

d�qqm
ds

¼ A1
1

1000

�
þ A2

2

1000
�TTm þ A3

3

1000
�TT 2m

�
d �TTm
ds

 !
;

ð28Þ

where

ae ¼ 0:0550þ 0:089

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pk2

ð1þ k2Þ ln 2

s
1

F 2L
ð29Þ

and

FL ¼ �uumffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g qa��qqm

qa
bu

q : ð30Þ

In the above system of ordinary differential equations

(22)–(28) there are seven unknowns i.e. x; y; h, �TTm, �uum,
b1=eu, �qqm which are, respectively, the coordinates x and
y of the jet axis, the angle of inclination, the mean

axial temperature, the mean axial velocity, the width of

the velocity profile of the jet, and the axial mean

density.

The numerical model starts the integration at the end

of flow establishment which occurs at a distance equal to

6D (where D is the width of the plane jet at the exit). The

boundary conditions are the initial values for the un-

known parameters

x; y; h; �TTm; �uum; b1=eu; �qqm

calculated at the end of flow establishment. Specifically

it is assumed at s ¼ 0,
x ¼ 6D; ð31Þ

y ¼ 0; ð32Þ

h ¼ 0; ð33Þ
�TTmðs ¼ 0Þ ¼ 0:73ðT0 � TaÞ þ Ta; ð34Þ

�uumðs ¼ 0Þ ¼ 0:82U0; ð35Þ

b1=euðs ¼ 0Þ ¼
ffiffiffiffiffiffiffiffi
2=p

p
D; ð36Þ

�qqmðs ¼ 0Þ
¼ 1þ ððA0 þ A1 �TTm þ A2 �TT 2m þ A3 �TT 3mÞ=1000Þ: ð37Þ

The solution is found using the variable order Adams

predictor corrector method. The numerical solution is

compared subsequently with experimental results.
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3. Experimental procedure

In this work, a heated plane buoyant jet was pro-

duced by discharging horizontally hot water from 84

round ports of a diffuser of diameter 10 cm. The diam-

eter of the ports was 0.305 cm, their spacing was 0.70

cm, and the length of the diffuser was 58.4 cm. The in-

dividual jets from the multiport diffuser merged at a

distance about 1 cm from their exit, forming a plane

buoyant jet. The equivalent width of the slit of the plane

buoyant jet is 0.105 cm. The buoyant jet discharged into

a tank 4:5� 2:7 and 2 m deep with glass walls filled with
water of uniform temperature. The horizontal buoyant

jet was confined by two Plexiglas walls 59 cm apart in

order to maintain two dimensionality of the flow. The

multiport diffuser and the confining Plexiglas walls were

positioned 38.5 cm above the tank bottom to permit

freely the entrainment of ambient water. A constant

head tank supplied the jet through a calibrated flow-

meter. In all the experiments the tracer concentration

measured was the excess temperature of the jet fluid

above the ambient fluid. A sketch of the experimental

apparatus is given in Fig. 2.

Instantaneous temperature measurements from a

rank of 30 thermistors, mounted on a stainless steel tube

to form a probe positioned either horizontally or verti-

cally, were recorded for 120 s at a sampling frequency of

40 samples/s.

The measurements were taken using ultra-fast re-

sponse thermistors (time constant 7 ms) of bead diameter

0.125 mm and the dissipation constant in still water at

25 �C was 0.25 mV/�C. The shelf-heating of the therm-
istor due to Ohmic dissipation was less than 0.006 �C.

The thermistors were calibrated at the beginning of an

experiment to minimize the drift and ageing problems.

The thermistors temperature response was measured

with a bridge circuit, and the instantaneous analog

voltages were recorded using a data acquisition system

and a PC. Each thermistor was individually calibrated

and a third-order polynomial fitted to the set of cali-

bration points in the least-squares sense. The used

thermistors were made by the company ‘‘THERMO-

METRICS INC’’ (USA) and belong to the FP07 series.

4. Comparison of the numerical model with experimental

results

A substantial number of experiments on plane

buoyant jets were performed using the apparatus and

techniques described in the previous section. In these

experiments, mean temperature and turbulence intensity

profiles were measured for jets with different initial

Fig. 2. A sketch of the experimental apparatus.

Fig. 3. Comparison of the centerline dilution determined experimentally from temperature profiles of this work with: (a) the prediction

of the mathematical model of this work; (b) the prediction of the standard integral model.
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Froude numbers. A total of 99 temperature cross-sec-

tions were measured. The initial Froude numbers F0
varied from 11.5 to 72.0.

The experimental results of this study for the axial

dilution are compared with the numerical prediction in

Fig. 3. These experimental results are compared in

Fig. 3(a) with predictions from the improved mathe-

matical model of this work. The same experimental re-

sults are compared in Fig. 3(b) with predictions from the

standard integral model of the type that Fan and Brooks

[3] used. As we see the improved mathematical model of

this work predicts reasonably well the centerline dilution

determined experimentally from 99 temperature profiles

and its prediction is generally better than the prediction

of the standard integral model.

Comparison with the numerical prediction of the

location of the buoyant jet axis, determined experi-

mentally from 99 temperature profiles is shown in

Fig. 4. Coordinates x=D or y=D of the axis are plotted,
because the corresponding y=D or x=D coordinates are

known from the probes’ places, which positioned either

horizontally or vertically. The experimental results for

the location of the buoyant jet axis are compared in

Fig. 4(a) with predictions from the improved mathe-

matical model of this work. The same experimental

results are compared in Fig. 4(b) with predictions from

the standard integral model. It is observed that the

numerical model of this work predicts reasonably well

the location of the jet axis and its prediction is gener-

ally better than the prediction of the standard integral

model.

A comparison is given in Fig. 5 of the location of the

jet axis determined experimentally from the temperature

profiles with the prediction of the improvedmathematical

model of this work and with the prediction of the stan-

dard integral model. In all cases, the mathematical model

of this work predicts in a more accurate way the jet

axis.

Fig. 4. Comparison of the coordinate of the jet axis determined experimentally from temperature profiles of this work with: (a) the

prediction of the mathematical model of this work; (b) the prediction of the standard integral model.

Fig. 5. Comparison of the coordinate of the jet axis determined

experimentally from temperature profiles with the prediction of

the mathematical model of this work and with the prediction of

the standard integral model.
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The experimental results for the location of the jet

axis – noted with the symbol � – and the trajectory

predicted from the improved mathematical model of this

work, which named as (1), are drawn in Fig. 6. Also the

trajectory predicted from the standard integral model is

drawn and named as (2). The trajectory named as (3) is a

result of neglecting the contribution of the turbulent

heat flux from the mathematical model of this work. The

trajectory named as (4) comes from the mathematical

model of this work using however constant entrainment

coefficient. The trajectory named as (5) comes from

the mathematical model of this work using conservation

of buoyancy flux instead of heat flux. It is also observed

the influence of the inclusion of the turbulent heat flux,

the effect of using constant entrainment coefficient and

Fig. 6. Comparison of the jet axis determined experimentally

(noted as �) with the prediction of the following mathematical

models: (1) mathematical model of this work; (2) standard in-

tegral model; (3) mathematical model of this work without the

contribution of turbulent heat flux; (4) mathematical model of

this work with constant entrainment coefficient; (5) mathe-

matical model of this work using conservation of buoyancy flux

instead of heat flux.

Fig. 7. Trajectories for various Froude numbers as they pre-

dicted from the numerical model for the horizontal buoyant

jet.

Fig. 8. Trajectories for various Froude numbers as they pre-

dicted from the numerical model for an inclined ðh0 ¼ 45�Þ
buoyant jet.

Fig. 9. Normalized length of the trajectory of a horizontal

buoyant jet as a function of the normalized vertical distance for

various initial Froude numbers F0.
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the effect of using conservation of buoyancy flux instead

of heat flux too. It is observed that the mathematical

model of this work really improves the standard integral

model.

Trajectories for various initial Froude numbers

(from 5 to 100) are plotted in Figs. 7 and 8, as they

predicted from the numerical model. The initial angle

of the inclination h0 is equal to 0� in Fig. 7, which
corresponds to the horizontal submerged heated plane

buoyant jet. In Fig. 8, the initial angle of inclination h0
is equal to 45�.

Usually engineers design diffusers according to the

centerline concentration and they use semi-empirical

formulas for this scope. The necessary parameter which

must be calculated is the length of the trajectory s. We

present subsequently diagrams and polynomial equa-

tions to help design engineers.

The normalized length of the trajectory ðs=DÞ as a
function of the normalized vertical distance ðy=DÞ for
various initial Froude numbers F0 is plotted in Figs. 9
and 10. The angle h0 ¼ 0� (Fig. 9) corresponds to the
horizontal buoyant jet and the angle h0 ¼ 45� (Fig. 10)
corresponds to the inclined buoyant jet. We have applied

a polynomial curve fitting of second degree to these data.

The calculated polynomial coefficients for various Fro-

ude numbers F0 are given in Tables 1 and 2 for the hor-
izontal ðh0 ¼ 0�Þ and the inclined ðh0 ¼ 45�Þ cases. These
polynomial functions are valid for 50 < s=D < 800.

5. Conclusion–discussion

The mathematical model of this study for the mixing

of an inclined submerged heated plane water jet has

three significant improvements over similar previous

models: (a) the conservation of heat flux instead of the

conservation of the buoyancy flux, (b) the inclusion of

the turbulent heat flux integrated across the jet, and (c)

the modification to use an entrainment function that

varies with Richardson number. The agreement of the

numerical model with the experimental results of this

study for the axial dilution and the trajectory indicates

reasonable accuracy (see Figs. 3–6). The inclusion of the

turbulent heat flux and the conservation of buoyancy

flux instead of heat flux in the numerical model improve

the overall accuracy of the model. In all cases, the

mathematical model of this work predicts in a more

accurate way the axial dilution and the jet trajectory

than the standard integral model. The length of the

trajectory s resulting easily from diagrams or from

simple polynomial functions is useful for engineers to

design diffusers.

Fig. 10. Normalized length of the trajectory of an inclined

buoyant jet ðh0 ¼ 45�Þ as a function of the normalized vertical
distance for various initial Froude numbers F0.

Table 1

Polynomial coefficients for calculation of the normalized length

of the trajectory (s=D) of a horizontal buoyant jet as a function
of the normalized vertical distance (y=D) for various initial
Froude numbers F0

F0 ðs=DÞ ¼ aþ bðy=DÞ þ cðy=DÞ2

a b c

5 13.1952 1.01652 �1:41687E� 05
10 31.3543 1.08456 �7:43328E� 05
15 47.0401 1.19428 �1:77202E� 04
20 60.3192 1.33815 �3:23013E� 04
30 81.1829 1.71564 �7:66952E� 04
40 96.3368 2.21102 �1:48996E� 03
50 107.2730 2.83298 �2:63188E� 03
60 115.0560 3.59138 �4:38533E� 03
70 120.5360 4.49568 �7:00201E� 03
80 124.3680 5.55122 �1:07852E� 02
90 127.0450 6.76334 �1:61021E� 02
100 128.9390 8.13079 �2:33519E� 02

Table 2

Polynomial coefficients for calculation of the normalized length

of the trajectory (s=D) of an inclined buoyant jet ðh0 ¼ 45�Þ as a
function of the normalized vertical distance (y=D) for various
initial Froude numbers F0

F0 ðs=DÞ ¼ aþ bðy=DÞ þ cðy=DÞ2

a b c

5 4.3751 1.00170 0.00000E+00

20 11.1863 1.09683 )7.42373E) 05
40 9.3777 1.23234 )1.62184E) 04
60 5.5487 1.32309 )2.00425E) 04
80 2.8483 1.37348 )2.01038E) 04
100 1.3016 1.39933 )1.83645E) 04
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